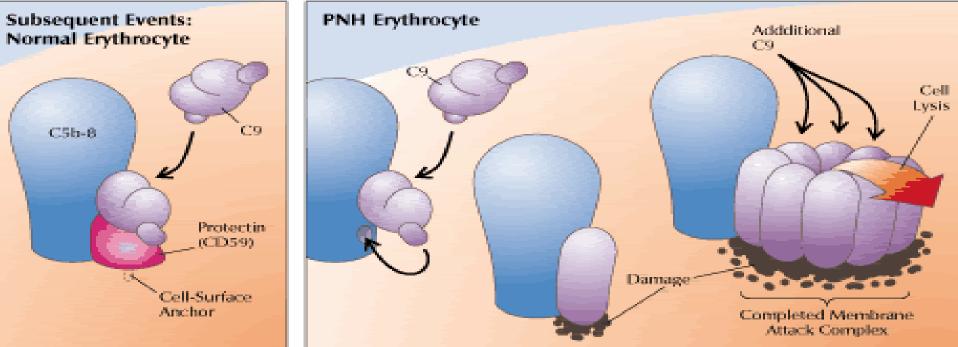
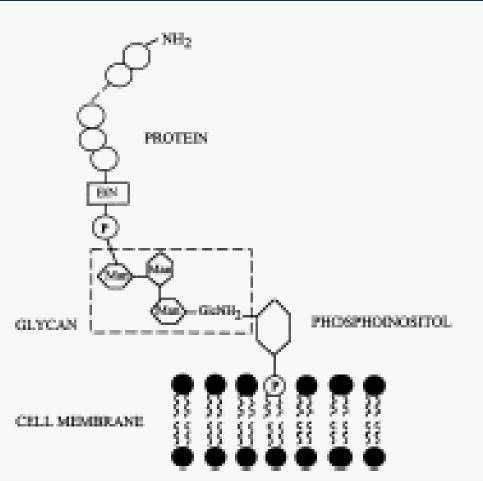

Paroxysmal Nocturnal Hemoglobinuria


Paroxysmal Nocturnal Hemoglobinuria

- Rare acquired hematopoetic stem cell disorder
- 1-10 per million
- Most frequent in 3rd decade
- Asian ancestry
- RBCs susceptible to complement-mediated lysis
- Related to lack of cell surface proteins that prevent complement attack

History of PNH

- 1866—first case report by Gull describing nocturnal hematuria
- **1882**—Strubing recognized PNH as a definite syndrome
- 1925—Enneking coined the name "Paroxysmal Nocturnal Hemoglobinuria"
- **1930s**—Hammidentified the role of complement and developed the serum test which is still used for diagnosis
- **1980s**—PNH blood cells found to lack cell surface proteins
- **1990s**—Somatic mutation identified as *PIG-A* gene

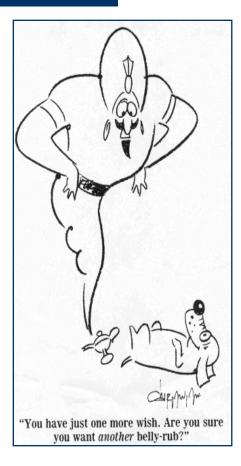

Pathophysiology of PNH

• Attachment of cell surface proteins

- transmembrane hydrophobic sequence
- anchor embedded within the membrane that the protein attaches to
- Common variable in all missing cell surface proteins is Glycophosphatidylinositol (GPI) anchor

GPI anchor

- Unclear purpose
- Defective biosynthesis at early step
- Coded by the *PIG-A* gene
- Approx 30 GPI-anchored proteins; 20 shown to be deficient in PNH
- All vary greatly in function (enzymes, receptors, and complement mediators)


Missing proteins of importance

Complement regulating proteins:

CD59 (aka MAC inhibitor/protectin)Homologous restriction factor (HRF)CD55 (aka decay accelerating factor)

Thrombosis regulating proteins:

CD87 (aka urokinase-type plasminogen activator receptor)

PNH Cell Types

- **<u>Type I</u>**: almost normal cells
- **<u>Type II</u>**: intermediate
- **<u>Type III</u>**: very sensitive
- Type II/III cells bind increased C3—excessive number of MAC are formed
- Can exist in any combination in pts with PNH

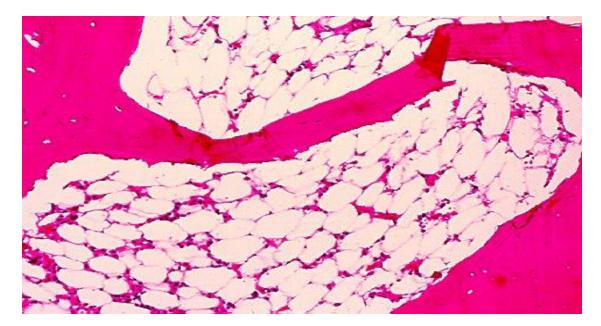
Clinical features

• Highly variable

• Classic Triad

- Hemolytic Anemia
- Bone Marrow failure (thrombocytopenia/neutropenia)
- Venous Thrombosis
- Chronic course with acute exacerbations
- Exacerbations often associated with infection

Hemolytic Anemia


- Present to some degree in all cases
- Degree of hemolysis depends on:
 - Proportion of sensitive RBCs
 - Cell type (PNH I-III)
 - Complement activation (ie infection, allergies, transfusion reaction, etc)

• Other effects of hemolysis:

- Iron deficiency
- ATN/ARF during episodes of massive hemolysis
- CRF
- Esophageal spasm (achalasia-like sx)
- Impotence

Bone Marrow Failure

- Most severe: aplastic anemia
- More commonly: active BM producing defective cells
- 2/3 thrombocytopenia/granulocytopenia

Venous Thromboses—the sinister sign

- 20% incidence in Europe and US (lower in Asians)
- Mainly central thromboses:
 - Liver (Budd-Chiari)
 - hepatic veins can thrombose in acute crisis or insidiously
 - Tends to persist with periodic exacerbations/remissions
 - Usually ultimately fatal
 - Cerebral Veins/Sinuses
 - Less common
 - Also tends to persist—Poor prognosis
 - Abdominal Veins
 - Renal/Spleen/Stomach/Intestinal
- LE DVT more common than in general population, but death by PE rare
- Arterial thrombosis also rare

Diagnosis

- Ham test (acidified-serum lysis test)
 - Gold standard from 1939 until advent of flow cytometry
 - Activation of complement by low pH; PNH cells lyse
 - High specificity
 - Cannot detect varying degrees of RBC sensitivity
- Flow Cytometry
 - Increased level of sensitivity: allows detection of 0.1% GPI-deficient clones
 - Uses monoclonal Ab to missing proteins (CD55/CD59) and fluorescence of labeled cells to detect certain cell populations
 - May screen RBCs, Platelets, and Lymphocyte components

Course and Prognosis

- Life span estimates 10-15yrs
- Approx 25% will survive > 25 yrs
- Spontaneous recovery in ~15% w/o long-term sequelae

Course and Prognosis

- Most common causes of death:
 - consequences of thrombosis (~33%)
 - effects of BM failure (~10%)
- May be preceded by or lead to the development of aplastic anemia (AA)
 - Incidence from various studies of 25-58%
 - Much less risk of thrombosis—less PNH cells overall
 - Possible "natural gene therapy" producing cells which escape destruction in the setting of AA
- 3-5% progress to acute leukemia
 - Likely more related to predisposition in pts with AA, not PNH itself

Treatment

• Focus on 3 aspects:

- Treat anemia
- Treat and prevent thromboses
- Modification of hematopoiesis
- Mainly focused on control of complications rather than interrupting disease process

Treating Cytopenias

- PRBC/Platelet Transfusions
 - Replaces destroyed cells
 - Also suppresses erythropoiesis when done on chronic basis
 - Special transfusion considerations only if necessary
- Epogen/FeSO⁴/Folate
 - Expensive, but shown to decrease need for high dose steroids and less transfusions
- Glucocorticoids
 - Unknown MOA
 - Useful in 50% pts
 - Thought to be related to direct prevention of hemolysis
 - 0.3-1 mg/kg/day

Treatment and Prevention of Clots

• Prevention

 Prophylactic anticoagulation for pts w/o contraindications

Treatment

- IV/Oral anticoagulants
- Thrombolytics:

TPA/Streptokinase/Urokinase

Modifying Hematopoiesis

• Immunosuppresants

- Better response in pts with hypoplastic marrow than hemolysis
- Mixed results: antithymocyte globulin response rates 0-63%; cyclosporin not effective

Bone Marrow Transplant

- Currently most curative and optimal Tx
- High risk of morbidity/mortality (10-20%)
- Risk:benefit considering pts with lesser sx
- No controlled studies for ethical reasons
- Gene therapy